
Page 1 of 5

License Statement

This is a Python version of AES-GCM. It is a modification of an AES and an AES-GCM program posted by
Cyrill Gössi at https://github.com/cgossi/fundamental_cryptography_with_python/tree/main . Cyrill
graciously allowed the use of his programs for modifications. However, only use for testing, education,
demonstration and research is allowed. Any use in operational application is prohibited.

The application of the FLTed function and other functional transformation like radix-n transformation
and use of n-state involution functions for n=2^k not being additions over GF(2^k) in characteristic in
cryptography is protected by issued and pending US patents. No license is provided for application of
the claimed subject matter in these IP cases. Contact us at info@labcyfer.com for any further
information.

How to RUN?

Go to page 4

Subject Matter
The Advanced Encryption Standard (AES) and Advanced Encryption Standard- Galois Counter Mode
(AES-GCM) are among the most widely used encryption methods. AES-GCM is AES-CTR (Counter Mode)
with authentication added.

AES-GCM is a preferred encryption standard in TLS 1.3.

AES-GCM (or CTR mode) applies AES for keystream generation. This keystream is XORed with the plain
text to form the cipher text. This is different from the original AES method, which is defined in a forward
(encryption) and reversing (decryption) variant. In AES-GCM the same keystream is generated in
encryption and decryption and only the AES forward mode is used.

The FLT and other transformations may be applied in different aspects of AES-GCM. For the purpose of
demonstration the transformation is applied only to the AddRoundKey() module and only applied for
round r=9 in each block.

The program is to demonstrate the effect of functional transformation on the generated cipher text. It is
not intended as a tutorial on AES or AES-GCM.

Warning
The effect of the functional transformations is seemingly a simple one. Don’t be deceived. We are
talking about factorial levels of modifications. For n=256 we are talking about a factor 10^500. The
radix-256 transformation provides a level of uncertainty of a factor greater than 10^1,000. Believe us,
there is no way that you can remember changes you make in functions like sc256, sn256 and car256. If
you do, please save the tables under their own names. We have absolutely no way to retrieve lost or
forgotten parameters. You are completely on your own on this. That is another reason why we only
provide a license for education, trial, testing and research.

https://github.com/cgossi/fundamental_cryptography_with_python/tree/main
mailto:info@labcyfer.com

Page 2 of 5

The Transformations

In this set of programs, again only Add_Round_Key() is transformed for round r=9. The transformation
herein pertains to two aspects. Again a novel reversible 256-state function is applied to a column of 4
bytes (or 256-state elements) in the State of AES is applied. Furthermore, a carry propagating radix-256
ripple adder is applied. The carry function ‘car256’ is completely random and may propagate a carry in
the range 0-255. That is of course different from what would be considered a ‘normal’ carry in an
addition, which is usually either 0 or 1. This random 256-state carry function has effectively 10^1,000
different variations that may be applied.

The function tables are pre-set. In aesgcm_rad_enc.py and aesgcm_rad_decr.py the lookup tables are
sc256.mat and car256neut.mat. The sc256 table represents the common addition over GF(256) and is
equivalent to bytewise XORing. The lookup table car256neut is an all 0 table, which means that no carry
is applied. Thus the processing of these programs will be identical to the standard AES-GCM execution
and no assertion error will occur.

In aesgcm_rad_enc_sncar.py and aesgcm_rad_decr_sncar.py the lookup tables are sn256.mat and
car256.mat. The sn256 table represents an FLTed addition over GF(256) and is NOT equivalent to
bytewise XORing. The lookup table car256 is a random 256-state 256 by 256 array, which means that
random carries are applied, depending on input operands. Thus the processing of these programs will
NOT be identical to the standard AES-GCM execution and an assertion error will occur.

One effect of course is that one may encrypt with aesgcm_rad_enc_sncar.py and decrypt with
aesgcm_rad_decr.py (the ‘normal’ decryption). Try it. It demonstrates the impossibility to “trial/error”
or “guess” the correct transformation.

The Programs

Background
This section provides a bit of detail on the modification of the base programs.

The effect of the functional transformation is expressed in the generated cipher text. As such, the
Python program is not intended to be a user friendly encryption/decryption demo. Running the
programs requires user actions. The Python program as provided is a combination of the AES encryption
and AES-GCM encryption programs. The AES-GCM program asks for plaintext (ASCII) input, which is
converted into byte format and printed as such.

The initiation vector IV and the key KEY are preloaded/set. These are used unchanged every time the
program is run. Please be aware of that. The same applies to AAD for computing the tag.

The program uses the AES_encryption step (H = aes_encryption(b'\x00' * (128 // 8), K, fun1, fun2)) to
create the keystream. The variable ‘fun1’ is a lookup table that replaces the XORing of words of 8-bits.

The table of fun1 is a lookup table of a reversible 256-state involution. This does not change the
statistical properties of the ciphertext.

Page 3 of 5

The table of fun2 is a lookup table of a 256 by 256 random 256-state array. This also does not change
the statistical properties of the ciphertext as long as sc256 is a reversible table.

We created different, slightly modified programs, to test the effects of modifications. Because of the
need to process in bytes, we created the encryption and decryption programs. These are essentially
identical. However, the encryption program accepts the plaintext as ASCII and generates the ciphertext
output as a string of hex elements. One should copy (CTRL-c) the string and then run the decryption
program and do Paste (CTRL-v) when asked for input.

We provide the decrypted output in ASCII and hex format. In case of matching encryption/decryption
programs the output of the decryption is identical to the plaintext. If not, one will see a hex
representation.

A second set of encryption/decryption programs applies a function ‘sn256’ as fun1, which is different
from ‘sc256’ and ‘car256’ as fun2 which is different from ‘car256neut.’

Assertion Errors

In case of running matching programs, one may get an “assertion error.” This is caused by using the not
expected lookup table. In that case the generated ciphertext is not the expected ciphertext. Despite
the error, one still correctly decrypts, of course.

Page 4 of 5

How to run the programs!

1) unzip AESRadPython.zip is its own folder, for instance ‘aesradpython’

2) open CMD terminal and go to the folder

3) make sure you have installed Python and with PIP installed: math, scipy.io

4) to run standard output AES-GCM type:
 python aesgcm_rad_enc.py

5) the program will print a small part of the operational lookup table as 5 by 5 array
 and will ask for “Enter the plaintext as ASCII text:”

6) you may enter any text, but as example enter: this is the required plaintext and hit ‘enter’

7) the program displays the hexadecimal format as well as the AES-GCM generated ciphertext

8) copy the displayed ciphertext (hex) string
 909263d4ad52b1bf8bc7e80a87b37cc2fc9f0207b8b68572477b367f5d46

9) Notice that NO assertion errors are generated

10) Type: python aesgcm_rad_decr.py

11) The program will ask for: Enter or Paste the ciphertext as a hexadecimal string:

12) Paste the string copied during earlier step

13) The program will display: ciphertext1: b'this is the required plaintext' This is the recovered
plaintext, recovered from the ciphertext. Remember: decryption in AES-GCM is re-encrypting the
ciphertext.

The programs aesgcm_rad_enc_sncar.py and aesgcm_rad_decr_sncar.py work in a similar way

From the output you will see that the applied function sn256 is different from the earlier sc256 and
car256 is not all 0.

Using the same input: this is the required plaintext , will generate an entirely different ciphertext.

Also assertion errors will occur as the auth_tag from test vectors will be different from expected
auth_tag. You may ignore, because this is to be expected. If it annoys you, just delete the assertion
statements.

One may enter the above copied ciphertext:
909263d4ad52b1bf8bc7e80a87b37cc2fc9f0207b8b5887e5e79273a565bf163e843f4f5f79c9ea2c0fd574e
at the request: Enter or Paste the ciphertext as a hexadecimal string in aesgcm_rad_decr_sncar.py :

The output is not the recovered plaintext as a transformed function sn256 was used.

Page 5 of 5

Changing the Functions in aesgcm_fltfun_enc_sn.py and aesgcm_fltfun_decr_sn.py.

The function sn256 loaded from sn256.mat may be changed.

Do this in line 425 and 426 of both programs in statements:

 data_func = scipy.io.loadmat('sn256.mat')

 func= data_func['sn256']

Change sn256.mat to one of: sn256a.mat ; sn256b.mat ; sn256c.mat; sn256d.mat; sin256.mat and
change [‘sn256’] to corresponding: [‘sn256a’]; [‘sn256b’]; [‘sn256c’]; [‘sn256d’] or [‘sin256’].

It may seem that these functions are random. But they are not. They are all different involutions, just
not XORings of words of 8 bits. Make sure you do identical changes in aesgcm_fltfun_enc_sn.py and
aesgcm_fltfun_decr_sn.py.

The table sin256.mat is a 256-state involution that is NOT associative.

Date: November 10, 2024

